Handout 2: Sets, summations, and for statements

1 Examples

1. Note that

$$
3+3+3+3=\sum_{i=1}^{4} 3=3 \sum_{i=1}^{4} 1 .
$$

2. Also, note that

$$
1+2+3+4+5+6=\sum_{i=1}^{6} i \quad \text { and } \quad 2+4+6+8+10=\sum_{i=2}^{5} 2 i=2 \sum_{i=1}^{5} i=10+2 \sum_{i=1}^{4} i .
$$

3. Let $T=\{-4,-3,-2,-1,0,1,2,3,4\}$. Then

$$
\sum_{i \in T} i=0 \text { and } \sum_{i \in T}|i|=20 .
$$

4. Let $T=\{3,6,8,14\}$. Then

$$
\sum_{i \in T: i \geq 7} i=8+14=22 .
$$

5. Let $a_{1}=2, a_{2}=5$, and $a_{3}=7$. Let x_{1}, x_{2}, and x_{3} denote decision variables. Then

$$
\sum_{i=1}^{3} a_{i} x_{i}=2 x_{1}+5 x_{2}+7 x_{3} .
$$

6. Consider the following inequalities.

$$
\begin{aligned}
x_{1}+2 x_{2}-4 x_{3}+4 x_{4} & \leq 5 \\
2 x_{1}+4 x_{2}+x_{4} & \leq 7 \\
5 x_{1}-x_{2}+5 x_{3}+2 x_{4} & \leq-2
\end{aligned}
$$

Define $R=\{1,2,3\}$ and $C=\{1,2,3,4\}$. For $i \in R$ and $j \in C$, let $a_{i j}$ denote the coefficients of the variables x_{j} in the inequalities and b_{i} denote the right-hand sides. This means that

$$
\begin{aligned}
& a_{11}=1, a_{12}=2, a_{13}=-4, a_{14}=4, \\
& a_{21}=2, a_{22}=4, a_{23}=0, a_{24}=1, \\
& a_{11}=5, a_{12}=-1, a_{33}=5, a_{34}=2,
\end{aligned}
$$

and

$$
b_{1}=5, b_{2}=7, b_{3}=-2 .
$$

Then, the inequalities can be succinctly expressed as

$$
\sum_{j \in C} a_{i j} x_{j} \leq b_{i} \text { for } i \in R .
$$

2 Homework problems

1. Using a summation, write an expression summing the first 20 positive integers. Then use a summation to write

$$
3+6+9+12+15
$$

2. Define indexed parameters and use a summation to express the following sum over the decision variables $y_{1}, y_{2}, y_{3}, y_{4}$.

$$
9 y_{1}-y_{2}+3 y_{3}+11 y_{4} .
$$

3. Define sets and indexed parameters to express the following inequalities using a single for statement and a summation over the decision variables z_{1} and z_{2}.

$$
\begin{aligned}
z_{1}+z_{2} & \geq 1 \\
z_{1} & \geq 3 \\
z_{2} & \geq 4 \\
2 z_{1}+4 z_{2} & \geq 7 \\
3 z_{1}+7 z_{2} & \geq 9
\end{aligned}
$$

4. Assume the index sets R and S have been defined. Also, for $i \in R$ and $j \in S$, assume that the parameters $a_{i j}$ and b_{i} have been defined as well as the decision variables x_{j}. Some of the following expressions have indexing errors. Identify what they are or indicate the expression is correct.
(a) $\sum_{j \in S} a_{i j} x_{j} \leq b_{i}$ for $i \in R$ and $j \in S$.
(b) $\sum_{i \in S} a_{i j} x_{j}$ for $j \in R$.
(c) $\sum_{j \in S, i \in R} a_{i j} x_{j} \leq b_{i}$.
(d) $\sum_{i \in S} a_{j i} x_{i} \leq b_{j}$ for $j \in R$.
